
Page 1 of 30

Page 1 of 30

CSCI-531 Spring 2023 Semester Project Version 5

Design and Implementation of a Simplified Secure Decentralized Audit System (SSDAS)

Nicholas Guerrero and Alan Perdigao

May 1, 2023

[1.0] Introduction

The project/problem domain is Electronic Health Records (EHR) systems have gradually
replaced traditional paper-based health record systems in the United States. Audit logs serve
multiple functional and regulatory purposes in EHR systems. When patient records are
assessed for some reason, the history of all such events must be recorded in a log file for later
audit on access histories. The log files are used to reconstructing the past state of medical
records, and it can be used as legal evidence in medical malpractice cases.

[1.1] Literature Review:

Over the past four years, EHR Audit Logs have gained much research attention and present
claims these logs are a “new goldmine for health services research”—with applications in
medical quality domains of: safe, effective, patient-centered, timely, efficient, and equitable
outcomes [11]. These logs contain clinician/patient interactions with Protected Health
Information and are required under the Health Insurance Portability and Accountability Act and
Meaningful Use policies [12]. This past year, researchers claimed the use of EHR Audit Logs “will
expand the breadth of research to improve cancer care (and outcomes)” in four domains: (1)
diagnostic reasoning and consumption; (2) care team collaboration and communication; (3)
patient outcomes and experience; and (4) provider burnout/fatigue [13].

With the security and privacy policy requirements for Protected Health Information,
researchers have proposed various prototypes using cryptographic and block chain
technologies to meet requirements—such as k-Health, e-Heath, PPAC, open-PHR, MeDShare,
MedRec, MediBchain, and PREHEALTH [2-10].

[1.2] Problem Statement: Simplified Secure Decentralized Audit System (SSDAS)
Design/Implementation Goals

SSDAS System requirements will focus on the security and privacy of Electronic Health Record
Audit Logs prototype design/software artifact with the following goals:

 [1] Privacy: Patient privacy should be maintained. Unauthorized entities should not be
 able to access audit records.

Page 2 of 30

Page 2 of 30

 [2] Identification and Authorization: All system users must be identified and
 authenticated. All requests to access the audit data should be authorized.

 [3] Queries: Only authorized entities should be able to query audit records.

 [4] Immutability: No one should be able to delete or change EXISTING audit records
 without detection. Any modifications/deletions of the audit records should be detected
 and reported. You can focus on attackers who are internal to the system modifying the
 audit data after it has already been received by the system. Note that you do not need
 to protect information against modification, it is sufficient to just detect and report any
 unauthorized modifications to the audit data.

 [5] Decentralization: The system should not rely on a single trusted entity to support
 immutability. This means there is no single entity (organization) that controls the audit
 logs. Blockchain-based technology works well for such systems.

 Note: SSDS Key Algorithm Functionality: Supports 10 Patients and three Audit
 Companies with Audit Records (Spec) that are Scalable/ Distributed—Run over the
 Network—Web Based Interactions

[1.3] Methods: The Lean Startup Method

To address the problem statement and SSDAS design prototype artifact, this research will use
Ries’s The Lean Startup Method—as shown below. Later in Section [5.0], we will evaluate and
measure the SSDAS artifact using the Method’s Minimal Viable Product (MVP)—“…a version of
the product that enables a full turn of the build-measure-learn loop with the minimal amount
of effort and the least amount of development time”—against seven scenarios or use cases to
prove the MVP meets the five SSDAS goals [14].

Page 3 of 30

Page 3 of 30

[2.0] System Workflow

Describe a general workflow for your system: tasks to be accomplished and steps that are
necessary to complete a specific task.

Appy.py - Runs Main Server
Blockchain.py – Contains code to create and run Blockchain
Buildmtree.py – Contains code to create and run MerkelTree
Genkeys.py – Contains code to create public/private keys for User Patient data using RSA
RSAcrypt.py – Contains code to encrypt User Patient data using AES-128 and RSA to protect AES
keys
Requirements.txt – Text file containing all libraries used in the project. Can run “pip install
requirements.txt” to install on machine

Phase 1: Startup Phase
Run queryServer.py

Page 4 of 30

Page 4 of 30

On startup the Query Server will create an empty blockchain and run itself on port 5001

Run app.py

On startup the main app will create a Blockchain and Merkel Tree data structures out of the
Audit Log records and then post the blockchain to the Query Server and run itself on port 5000
The Blockchain creates a decentralized Audit Log among all clients who access the main server
to get HTML and the Query Server itself. The Merkel Tree is used to detect Audit Log tampering
via its root hash and making an atomic comparison with mutex locks.

Blockchain: Can be viewed in Section [5.7]
Merkel Tree: Can be viewed in Section [7.2.4]

Phase 2: Login
A Super User (audit company) or Regular User (patient) can login with their credentials. Super
Users have usernames: “alice”, “bob”, “carl” with passwords “password1”, “password2”,
“password3” respectively. A Regular User can be given a username and password by adding
them as a patient with a GUI on the home page once the Super User logs in, their username is
their given name and their password is automatically assigned to be “user{ user_id #}”

Super User alice adds a new patient Mary to the database of patient records (Her data is
encrypted using RSA/AES)

Mary can then login with her generated credentials

Page 5 of 30

Page 5 of 30

Mary has a login screen customized for her authorization level

You can see Mary is now a patient alice can view

Super Users also have the ability to edit user data and delete user data via the
“edit_user/user_id” and “delete_user/user_id” routes in addition to the ability to create new
Regular Users. An edit and deletion will be recorded by the Audit Log.

Password hashing and checking is done with the werkzeug.security Python Library

werkzeug.security is a Python library that provides various security-related functions for web
applications. Two of the most commonly used functions from this library are
heck_password_hash and generate_password_hash.

generate_password_hash(password, method='pbkdf2:sha256', salt_length=8) is a function that
generates a hash of the input password using a secure one-way hashing algorithm. The
password parameter is the input password that you want to hash, while the method parameter
specifies the algorithm to use (default is PBKDF2 with SHA-256). The salt_length parameter
specifies the length of the salt to use in the hashing process (default is 8). The function returns
the hashed password as a string.

check_password_hash(hash, password) is a function that checks if a given password matches a
given hash. The hash parameter is the hashed password string, while the password parameter

Page 6 of 30

Page 6 of 30

is the password you want to check against the hash. The function returns a boolean value
indicating whether or not the password matches the hash.

Phase 3: Querying

A Regular User has their querying abilities limited to just their own data. A patient Mary can
only view edits and queries of her own data while a Super User such as alice can view all patient
data and all Audit Log data. This is managed by a Query Server that is running on port 5001 that
manages what data to send back to the main app server based on login credentials. Note all
patient data in the sqlite database is encrypted so anyone listening over the network would not
be able to decrypted the ciphertext without the appropriate key.

Alice makes an update to Mary’s data

Alice can see all Audit Log Records

On login, Mary can see only Audit Log records pertaining to her health data

While a Regular User “Nick” only sees Audit Log records pertaining to his health data

Page 7 of 30

Page 7 of 30

All patient data is encrypted by the main server

Phase 4: Simulate Tampering

Checking this GUI box will edit one of the Audit Log records, and attempt at access to another
route such as querying the database or editing user name the app will warn the system that
tampering has been detected by the following algorithm:

On generation & insertion of Audit Log record:

1.) Acquire mutex lock
2.) Given current Audit Log records recompute a Merkel Tree
3.) If the previous Merkel Tree’s root is equal to the newly computed Merkel Tree’s root

then no tampering has occurred, else tampering has definitely occurred (First Merkel
Tree is computed in Phase 1: Startup)

4.) If no tampering, insert Audit Log record
5.) Set the current Merkel Tree to be the Merkel Tree computed after the addition of the

new Audit Log Record
6.) Release mutex lock

Page 8 of 30

Page 8 of 30

This algorithm guarantees that any tampering will be detected by the system since no
operations having to do with creating/checking the Merkel Tree can occur outside the mutex
locks.

[3.0] SSDAS System Architecture

As shown below there are multiple functions: [3.1] Describe the system components and their
functionality: [3.1.1] Authentication Server; [3.1.2] Audit Server; [3.1.3] Query Server
[3.1.4] Others, etc.. [3.2] Describe the communication patterns among the components
(requests and response).

The Main Server on login will allow access to routes that will allow a user to query the audit log
and their user (patient) data. Blockchain and Merkel Tree data structured are generated on
bootup of the Main Server and Query Server respectively. The blockchain is posted to clients

Page 9 of 30

Page 9 of 30

and to the Query Server to maintain decentralization of the Audit Log. A key management
system is held within the Main Server that encrypts patient data that is being sent to any other
route/port and it only decrypted when HTML needs to be rendered to the appropriate user or
edits to user data need to be submitted by a Super User.

Patient data needs to be decrypted to render HTML properly

Patient data needs to be decrypted to submit to the Query Server so the sqlite database can
update properly.

Patient data is subsequently re-encrypted using the User’s public key once the form is
submitted on the “edit_user/user_id” route

[4.0] Cryptographic Components

[4.1] Discuss appropriate choice of cryptographic primitives to ensure system supports goals.

Goal/Crypto
Primitive

Authentication
Server (app.py)

Audit Server
(app.py/ sqlite

DB)

Query Server
(QueryServer.py)

Patient Data
(sqlite DB)

Privacy Confidentiality
(Block Cipher)

Integrity (Public-
Key Cipher)

Confidentiality
(Block Cipher)

Integrity (Public-
Key Cipher)

Confidentiality
(Block Cipher)

Integrity (Public-
Key Cipher)

Confidentiality
(Block Cipher)

Integrity (Public-
Key Cipher)

Page 10 of 30

Page 10 of 30

Identification &
Authorization

Authenticity

(Hash

Functions)

Authenticity

(Hash

Functions)

Authenticity

(Hash Functions)
 Authenticity

(Hash

Functions)

Queries Authenticity

(Hash

Functions)

Authenticity

(Hash

Functions)

Authenticity

(Hash Functions)
Authenticity

(Hash

Functions)
Immutability Nonrepudiation/

Integrity (Hash

Functions/Sha-

256)

Nonrepudiation/

Integrity (Hash

Functions/ Sha-

256)

Nonrepudiation/

Integrity (Hash

Functions/ Sha-

256)

Nonrepudiation/

Integrity (Hash

Functions/ Sha-

256)
Decentralization Nonrepudiation/

Integrity (Hash

Functions/ Sha-

256)

Nonrepudiation/

Integrity (Hash

Functions/ Sha-

256

Nonrepudiation/

Integrity (Hash

Functions/ Sha-

256)

Nonrepudiation/

Integrity (Hash

Functions/ Sha-

256)

 [4.2] Describe concrete encryption schemes and key management approaches used in system.

Encryption Schemes
Merkel Tree - Tampering

Detection

RSA - Encryption of AES

keys

AES-128 - Encryption of

Patient Data

Blockchain - Decentralization
Key Management

Diffie Hellman

[5.0] Evaluation: SSDAS System Meets Design and Implementation Goals/Requirements

To evaluate and measure the SSDAS artifact using the Method’s Minimal Viable Product (MVP)
concept—“…a version of the product that enables a full turn of the build-measure-learn loop
with the minimal amount of effort and the least amount of development time”—the artifact
will be evaluated/measured against seven scenarios (or use cases) listed below to demonstrate
the MVP meets the five overall SSDAS goals: (1) Privacy; (2) Queries; (3) Immutability; (4)
Identification and Authorization; and (5)Decentralization [14].

For ease of reading, the seven scenarios (or use cases) are summarized below in outline format.
Then, the SSDS artifact will demonstrate and measure it against each scenario as proof—using
screenshots.

Page 11 of 30

Page 11 of 30

[5.1] Scenario 1: Audit Data Record is Generated. Transmitted, and Stored in the Audit Log
[5.2] Scenario 2: Patient Wants to Know Who Accessed Their HER Data
[5.3] Scenario 3: Auditor Wants to Know Who Accessed Data of All or Particular Patients
[5.4] Scenario 4: Attacker Corrupts an Existing Audit Record
[5.5] Scenario 5: Patient, Auditor, or Attacker Tries to Log-In to Your System
[5.6] Scenario 6: Patient, Auditor, or Attacker Tries to Access Audit Data
[5.7] Scenario 7: Multiple Servers Keep an Updated Version of the Ledger

[5.1] Scenario 1: Audit Data Record is Generated. Transmitted, and Stored in the Audit Log

Audit Record is generated and stored in the Sqlite DB, Blockchain, & Merkel Tree

Sqlite DB

Blockchain

Merkel Tree

Page 12 of 30

Page 12 of 30

[5.2] Scenario 2: Patient Wants to Know Who Accessed Their EHR Data

Patients will be sent a response by the Query Server with all Audit Logs pertaining to their user
id

Query Results for User: Nick with Patient ID: 1

[5.3] Scenario 3: Auditor Wants to Know Who Accessed Data of All or Particular Patients

Auditors are Super Users and therefore receive a different response from the Query Server with
all Audit Log records

INPUT QUERY: SELECT * FROM audit_log;
QUERY RESULT: All audit log records

INPUT QUERY: SELECT * FROM audit_log WHERE patient_id=1;
QUERY RESULT: A subset of audit_log records just pertaining to User “Nick”

Page 13 of 30

Page 13 of 30

[5.4] Scenario 4: Attacker Corrupts an Existing Audit Record

A GUI is provided on the home screen to simulate Audit Log Tampering

Submitting the button will run the code in the following route:

As seen the Audit Log “record 1” has been tampered with

The following “manageAuditLog” function will detect this tampering atomically using mutex
locks as described in Section [2.0] System Workflow Phase 4

Page 14 of 30

Page 14 of 30

Tampering Detected Screen

[5.5] Scenario 5: Patient, Auditor, or Attacker Tries to Log-In to Your System

An Attacker tries to login:

Unless proper credentials are provided the Main Server will not provide rendered HTML for a

client and a 401 screen will appear.

Page 15 of 30

Page 15 of 30

[5.6] Scenario 6: Patient, Auditor, or Attacker Tries to Access Audit Data

@login_required decorator on Query Server prevents Querying unless authenticated

An attacker fails to access endpoint /query_database unless authenticated

Login credentials required to access endpoint

Auditor accessing the Audit Data at the same endpoint is authenticated by Flask Login manager
and werkzeug.security Python library

Page 16 of 30

Page 16 of 30

[5.7] Scenario 7: Multiple Servers Keep an Updated Version of the Ledger

On Port 5000 we have a blockchain of the Audit Log

On Port 5001 we have an exact blockchain Copy of the Audit Log

Page 17 of 30

Page 17 of 30

Notice every block has the same hash as the correspond block on the different port. A true
exact copy. Every client who is a Super User will also have a copy of the Blockchain sent to
them.

[6.0] System Assumptions and Limitation

[6.1] Prototype Assumptions—assignment requirements,

Assumption:

Assumption 1: The only threat model considered in this prototype is an insider to the system

who was able to get Super User login credentials. We recognize that in a production environment

cryptosystem requires precisely specifying formal methods. Specifically, we would need to

consider network attacks such as Brute force attack, known plaintext dictionary, Replay attack,

Man in the middle, Password sniffing, IP spoofing, Connection hijacking, SYN flooding.

Assumption 2: In a true production environment cryptosystem we would need to consider the

organizational, legal, and regulatory policies however for this prototype we only consider 5 goals

specified in [5.0] Evaluation: SSDAS System Meets Design and Implementation
Goals/Requirements

Assumption3: The instructions asked for a PDF format with a font size of 12 points, single-

spaced, single column. Not less than 10 and no more than 20 pages. Figures, tables, screenshots

and the like are not included in the 20-page maximum page count. You will not be penalized for

exceeding the page limit, but text beyond the 20-page limit will not be considered in grading.

Therefore, please consider that if we removed this documents screenshots/figures/tables the

document would actually be less than 20-pages. (Presently at 30)

Limitations:

Limitation 1: Since on bootup of the Main Server sends a copy of the blockchain to the

Query Server the servers must be started in the order

1.) Query Server

2.) Main Server

Limitation 2: The Audit Log does not exceed 500 records

It should be noted that a substantially large Audit record will not be sent over HTTP to the Query

Server or clients because the message would be too long. The message needs to be cut up into

chunks and sent over the network but did not have time to implement this case handling.

Limitation 3: Main Server always logs in a User or Super User as the first action taken

On Login is when the blockchain is sent to the Query Server and client nodes.

Limitation 4: We are not using an actual networking to simulate packet flow among nodes.

Page 18 of 30

Page 18 of 30

Our implementation runs on a single machine with different ports being used as a simulation of

an entirely different machine. Message exchange is done with the Python requests library and

called from a client or a server. We explored using DETER (Cyber Defense Technology

Experimental Research) for a realistic implementation that is scalable, distributed, and

decentralized. Our key management system just uses a basic implementation that is easily

substitutable for an actual key management implementation such as Diffie-Hellman key

exchange for extra network security TLS 1.3

[6.2] Take MVP baseline and compare to EHR Blockchain References, Privacy Class,

legal(weaknesses)—free flow like assignment big picture and actual prototype.

[7.0] Implementation:

[7.1] SSDAS Programs Design Written Description

In the Main Server (app.py) Flask is used to render HTML, redirect URLS, create session
variables, create requests to the Query Server and serve json and appropriate endpoints

Flask Login is used to create a Login Manager that will authenticate users with the
werkzeug.security libeary

SQLAlchemy is used to create SQL models that define the scheme of the User and Audit Log
tables.

Buildmtree, genkeys, RSAcrypt, and blockchain are all custom code to meet the requirements of
the assignment

All other libraries are to do basic datetime, and string manipulation

Page 19 of 30

Page 19 of 30

[7.2] Demonstrate SSDAS Programs Work by Goals with Screen Capture

[7.2.1] Privacy: Patient privacy should be maintained. Unauthorized entities should not be
able to access audit records.

Audit Records are protected by Flask Login Manager and additionally Patient User data is
encrypted using (AES/RSA) and only decrypted by the Main Server when HTML is rendered at
the appropriate time using a User’s private key.

User Encrypted Data (AES/RSA)

Data is Encrypted in user table in Sqlite DB

Page 20 of 30

Page 20 of 30

Data encrypted on /add_user route

Data encrypted on /edit_user route

On /index html render the data is decrypted using the private key of a user

Keys Stored in app.py and generated on /add_user

Page 21 of 30

Page 21 of 30

[7.2.2] Identification and Authorization: All system users must be identified and
authenticated. All requests to access the audit data should be authorized.

Super Users (audit companies) and Users (Regular Patients) are given login credentials

Patient Log-In Screen (Only the Regular User Record)

Audit User Login Screen (All Records)

Page 22 of 30

Page 22 of 30

[7.2.3] Queries: Only authorized entities should be able to query audit records.

To be able to Query the SQL database through the Query Server each endpoint needs to be
authenticated through the Flask Login manager and the password hashing and checking
functions of the werkzeug.security Python Library. The Query Server will send back an
appropriate response for the logged in User based on whether they are a Super User or a
Regular User.

Query Database Screen

Query Server Running on Port 5001

Page 23 of 30

Page 23 of 30

Audit Superuser Query Result for Audit Log (All Records shown)

Audit Superuser Query Result for Patient Data (All Patient Data shown)

Patient User Query Result for Audit Log (Only Audit Log records shown pertaining to User: Nick)

Page 24 of 30

Page 24 of 30

Patient User Query Result for Patient Data (Only records shown pertaining to User: Nick)

[7.2.4] Immutability: No one should be able to delete or change EXISTING audit records
without detection. Any modifications/deletions of the audit records should be detected and
reported. You can focus on attackers who are internal to the system modifying the audit data
after it has already been received by the system. Note that you do not need to protect
information against modification, it is sufficient to just detect and report any unauthorized
modifications to the audit data.

Page 25 of 30

Page 25 of 30

Audit Log Immutability is guaranteed by the steps:

On generation & insertion of Audit Log record:

1.) Acquire mutex lock
2.) Given current Audit Log records recompute a Merkel Tree
3.) If the previous Merkel Tree’s root is equal to the newly computed Merkel Tree’s root

then no tampering has occurred, else tampering has definitely occurred (First Merkel
Tree is computed in Phase 1: Startup)

4.) If no tampering, insert Audit Log record
5.) Set the current Merkel Tree to be the Merkel Tree computed after the addition of the

new Audit Log Record
6.) Release mutex lock

This algorithm guarantees that any tampering will be detected by the system since no
operations having to do with creating/checking the Merkel Tree can occur outside the mutex
locks.

Merkel Tree Visualized

JSON Merkel Tree

Page 26 of 30

Page 26 of 30

Button on the Home Screen to tamper with an Audit Log Record

Detection Screen Warning

Example of Tampering in Sqlite DB

Main Function to deal with the Immutability requirement

[7.2.6] Identification and authorization: Identification refers to the process of verifying the

identity of an individual or entity. Authorization refers to the process of granting access to a

particular resource or service based on the verified identity of the user or system.

Main Server Flask Login route that is used to Identify and authenticate session of a User on
access to every endpoint

Page 27 of 30

Page 27 of 30

Query Server Flask Login route that is used to Identify and authenticate session of a User on
access to every endpoint

[7.2.6] Decentralization: The system should not rely on a single trusted entity to support
immutability. This means there is no single entity (organization) that controls the audit logs.
Blockchain-based technology works well for such systems.

Every node in the network is posted a copy of the blockchain from the Main Server. On an Audit
Log record creation, a new block is added to the Audit Log, the SQL DB is updated, and the new
block is posted to each node on the network. The hashes of each block preserve the
consistency

Page 28 of 30

Page 28 of 30

Blockchain code:

Query Server route’s to POST blockchain and new blocks to

[7.3] Explanation of SSDAS Programs Execution and Inputs/Outputs

[7.4] Submit SSDAS Code (submitted separately)

[8.0] Demo Recording: Demonstrate how SSDAS System Works (submitted separately)

Page 29 of 30

Page 29 of 30

References

[1] Mihailescu, M. I., & Nita, S. L. (2021). Cryptography and Cryptanalysis in MATLAB.

Apress.

[2] Stamatellis, C., Papadopoulos, P., Pitropakis, N., Katsikas, S., & Buchanan, W. J. (2020). A

privacy-preserving healthcare framework using hyperledger fabric. Sensors, 20(22), 6587.

[3] Tith, D., Lee, J. S., Suzuki, H., Wijesundara, W. M. A. B., Taira, N., Obi, T., & Ohyama, N.

(2020). Application of blockchain to maintaining patient records in electronic health record for

enhanced privacy, scalability, and availability. Healthcare informatics research, 26(1), 3-12.

[4] Madine, M. M., Battah, A. A., Yaqoob, I., Salah, K., Jayaraman, R., Al-Hammadi, Y., ... &

Ellahham, S. (2020). Blockchain for giving patients control over their medical records. IEEE

Access, 8, 193102-193115.

[5] Dubovitskaya, A., Xu, Z., Ryu, S., Schumacher, M., & Wang, F. (2017). Secure and trustable

electronic medical records sharing using blockchain. In AMIA annual symposium proceedings

(Vol. 2017, p. 650). American Medical Informatics Association.

[6] Xia, Q. I., Sifah, E. B., Asamoah, K. O., Gao, J., Du, X., & Guizani, M. (2017). MeDShare:

Trust-less medical data sharing among cloud service providers via blockchain. IEEE access, 5,

14757-14767.

[7] Shi, S., He, D., Li, L., Kumar, N., Khan, M. K., & Choo, K. K. R. (2020). Applications of

blockchain in ensuring the security and privacy of electronic health record systems: A survey.

Computers & security, 97, 101966.

[8] Ekblaw, A., Azaria, A., Halamka, J. D., & Lippman, A. (2016, August). A Case Study for

Blockchain in Healthcare:“MedRec” prototype for electronic health records and medical research

data. In Proceedings of IEEE open & big data conference (Vol. 13, p. 13).

[9] Rezaeibagha F, Win KT, Susilo W. A systematic literature review on security and privacy of

electronic health record systems: Technical perspectives. Health Information Management

Journal. 2015;44(3):23-38. doi:10.1177/183335831504400304

[10] Sheikh Mohammad Idrees PA. Blockchain for Healthcare Systems: Challenges, Privacy,

and Securing of Data. CRC Press; 2021. doi:10.1201/9

[11] Adler-Milstein J, Adelman JS, Tai-Seale M, Patel VL, Dymek C. EHR audit logs: A new

goldmine for health services research? Journal of biomedical informatics. 2020;101:103343-

103343. doi:10.1016/j.jbi.2019.103343

[12] Kannampallil T, Adler-Milstein J. Using electronic health record audit log data for research:

insights from early efforts. Journal of the American Medical Informatics Association : JAMIA.

2022;30(1):167-171. doi:10.1093/jamia/ocac173

Page 30 of 30

Page 30 of 30

[13] Huilgol YS, Adler‐Milstein J, Ivey SL, Hong JC. Opportunities to use electronic health

record audit logs to improve cancer care. Cancer medicine (Malden, MA). 2022;11(17):3296-

3303. doi:10.1002/cam4.4690

[14] Reis, E. (2011). The lean startup. New York: Crown Business, 27, 2016-2020.

