Page 1 of 30

CSCI-531 Spring 2023 Semester Project Version 5
Design and Implementation of a Simplified Secure Decentralized Audit System (SSDAS)
Nicholas Guerrero and Alan Perdigao

May 1, 2023

[1.0] Introduction

The project/problem domain is Electronic Health Records (EHR) systems have gradually
replaced traditional paper-based health record systems in the United States. Audit logs serve
multiple functional and regulatory purposes in EHR systems. When patient records are
assessed for some reason, the history of all such events must be recorded in a log file for later
audit on access histories. The log files are used to reconstructing the past state of medical
records, and it can be used as legal evidence in medical malpractice cases.

[1.1] Literature Review:

Over the past four years, EHR Audit Logs have gained much research attention and present
claims these logs are a “new goldmine for health services research” —with applications in
medical quality domains of: safe, effective, patient-centered, timely, efficient, and equitable
outcomes [11]. These logs contain clinician/patient interactions with Protected Health
Information and are required under the Health Insurance Portability and Accountability Act and
Meaningful Use policies [12]. This past year, researchers claimed the use of EHR Audit Logs “will
expand the breadth of research to improve cancer care (and outcomes)” in four domains: (1)
diagnostic reasoning and consumption; (2) care team collaboration and communication; (3)
patient outcomes and experience; and (4) provider burnout/fatigue [13].

With the security and privacy policy requirements for Protected Health Information,
researchers have proposed various prototypes using cryptographic and block chain
technologies to meet requirements—such as k-Health, e-Heath, PPAC, open-PHR, MeDShare,
MedRec, MediBchain, and PREHEALTH [2-10].

[1.2] Problem Statement: Simplified Secure Decentralized Audit System (SSDAS)
Design/Implementation Goals

SSDAS System requirements will focus on the security and privacy of Electronic Health Record
Audit Logs prototype design/software artifact with the following goals:

[1] Privacy: Patient privacy should be maintained. Unauthorized entities should not be
able to access audit records.

Page 1 of 30

Page 2 of 30

[2] Identification and Authorization: All system users must be identified and
authenticated. All requests to access the audit data should be authorized.

[3] Queries: Only authorized entities should be able to query audit records.

[4] Immutability: No one should be able to delete or change EXISTING audit records
without detection. Any modifications/deletions of the audit records should be detected
and reported. You can focus on attackers who are internal to the system modifying the
audit data after it has already been received by the system. Note that you do not need
to protect information against modification, it is sufficient to just detect and report any
unauthorized modifications to the audit data.

[5] Decentralization: The system should not rely on a single trusted entity to support
immutability. This means there is no single entity (organization) that controls the audit
logs. Blockchain-based technology works well for such systems.

Note: SSDS Key Algorithm Functionality: Supports 10 Patients and three Audit
Companies with Audit Records (Spec) that are Scalable/ Distributed—Run over the
Network—Web Based Interactions

[1.3] Methods: The Lean Startup Method

To address the problem statement and SSDAS design prototype artifact, this research will use
Ries’s The Lean Startup Method—as shown below. Later in Section [5.0], we will evaluate and
measure the SSDAS artifact using the Method’s Minimal Viable Product (MVP)—*...a version of
the product that enables a full turn of the build-measure-learn loop with the minimal amount
of effort and the least amount of development time” —against seven scenarios or use cases to
prove the MVP meets the five SSDAS goals [14].

_

total time through
the loop
-~

Page 2 of 30

Page 3 of 30

[2.0] System Workflow

Describe a general workflow for your system: tasks to be accomplished and steps that are
necessary to complete a specific task.

SSDAS Prototype Unauthorized

gers %?@ - Users
g% : 2830 o) ®

Read Query
2.5 —=

Read Query

& BE e =lr
g ‘ *:bo\

Authorized
Participants

@ app.py
@ blockchain.py

& buildmtree.py
@ genkeys.py
& queryServer.py

= requirements.txt

@ RSAcrypt.py

Appy.py - Runs Main Server

Blockchain.py — Contains code to create and run Blockchain

Buildmtree.py — Contains code to create and run MerkelTree

Genkeys.py — Contains code to create public/private keys for User Patient data using RSA

RSAcrypt.py — Contains code to encrypt User Patient data using AES-128 and RSA to protect AES

keys
Requirements.txt — Text file containing all libraries used in the project. Can run “pip install
requirements.txt” to install on machine

Phase 1: Startup Phase
Run queryServer.py

Page 3 of 30

Page 4 of 30

if __name__ == ' ain H
with app.app_context():

blockchain = Blockchain()
app. run(port=5001)

On startup the Query Server will create an empty blockchain and run itself on port 5001

Run app.py

if __name__ == '__main__"':
with app.app_context():
createMerkelTree()

createBlockChain()
app.run(port=5000)

On startup the main app will create a Blockchain and Merkel Tree data structures out of the
Audit Log records and then post the blockchain to the Query Server and run itself on port 5000
The Blockchain creates a decentralized Audit Log among all clients who access the main server
to get HTML and the Query Server itself. The Merkel Tree is used to detect Audit Log tampering
via its root hash and making an atomic comparison with mutex locks.

Blockchain: Can be viewed in Section [5.7]
Merkel Tree: Can be viewed in Section [7.2.4]

Phase 2: Login

A Super User (audit company) or Regular User (patient) can login with their credentials. Super
Users have usernames: “alice”, “bob”, “carl” with passwords “password1”, “password2”,
“password3” respectively. A Regular User can be given a username and password by adding
them as a patient with a GUI on the home page once the Super User logs in, their username is
their given name and their password is automatically assigned to be “user{ user_id #}"”

Super User alice adds a new patient Mary to the database of patient records (Her data is
encrypted using RSA/AES)

Mary can then login with her generated credentials

Page 4 of 30

Page 5 of 30

Login
Usmnmn&[Maw

Password:

Login

Mary has a login screen customized for her authorization level

+ Oucry Dusabuse
+ Logout

Welcome, Mary!
1D Name

12 Mary Mary

Simulate Au

DOB Gender Blood Type Medical Condition Medication
o March 13 1995 Female AB Fever Advil
pering [Submt

You can see Mary is now a patient alice can view

* Lo

Welcome, alice!

A U

Super Users also have the ability to edit user data and delete user data via the
“edit_user/user_id” and “delete_user/user_id” routes in addition to the ability to create new
Regular Users. An edit and deletion will be recorded by the Audit Log.

Password hashing and checking is done with the werkzeug.security Python Library

audit_users = {

werkzeug.security is a Python library that provides various security-related functions for web
applications. Two of the most commonly used functions from this library are
heck_password_hash and generate_password_hash.

generate_password_hash(password, method='pbkdf2:sha256', salt_length=8) is a function that
generates a hash of the input password using a secure one-way hashing algorithm. The
password parameter is the input password that you want to hash, while the method parameter
specifies the algorithm to use (default is PBKDF2 with SHA-256). The salt_length parameter
specifies the length of the salt to use in the hashing process (default is 8). The function returns
the hashed password as a string.

check_password_hash(hash, password) is a function that checks if a given password matches a
given hash. The hash parameter is the hashed password string, while the password parameter

Page 5 of 30

Page 6 of 30

is the password you want to check against the hash. The function returns a boolean value
indicating whether or not the password matches the hash.

Phase 3: Querying

A Regular User has their querying abilities limited to just their own data. A patient Mary can
only view edits and queries of her own data while a Super User such as alice can view all patient
data and all Audit Log data. This is managed by a Query Server that is running on port 5001 that
manages what data to send back to the main app server based on login credentials. Note all
patient data in the sqlite database is encrypted so anyone listening over the network would not
be able to decrypted the ciphertext without the appropriate key.

Alice makes an update to Mary’s data

€ 3 C 127.0.0.1 VR

Finance 101 - Car.. @9 Big-0 Algorithm C... Tuition & Funding... [l Computational Co.. s Computer Science.. U Classes Offered - OpeningTree M.S. Computer Sc...

D Name Email DOB Gender Blood Type Medical Condition Medication
Mary Mary@gmail.com March 13 1995 Female AB Diabetes Insulin Update User

Alice can see all Audit Log Records

Query Results

Patient 1D User 1D

slice query - SELEC
alice

N
Nk
N

s z

Mob query - SELECT * FROM ssfit_jog
ELECT * FROM usit_iog WHERE patient_id=1

On login, Mary can see only Audit Log records pertaining to her health data

Query Results

ID Datetime Patient ID User ID Action Type
11 2023-05-01 09:47:01.833094 12 bob create

13 2023-05-01 09:47:01.833094 12 bob delete

24 2023-05-01 10:13:46.275916 12 alice create

25 2023-05-01 10:13:46.275916 12 alice change

While a Regular User “Nick” only sees Audit Log records pertaining to his health data

Page 6 of 30

Page 7 of 30

Query Results

ID Datetime Patient ID User ID Action Type

3 2023-05-01 09:47:01.833094 1 Nick query - SELECT * FROM audit_log WHERE patient_id=1
4 2023-05-01 09:47:01.833094 1 Nick query - SELECT * FROM audit_log WHERE patient_id=1
5 2023-05-01 09:47:01.833094 1 Nick query - SELECT * FROM user WHERE id=1

6 2023-05-01 09:47:01.833094 1 alice change

7 2023-05-0109:47:01.833094 1 Nick query - SELECT * FROM audit_log WHERE patient_id=1
15 2023-05-01 09:47:01.833094 1 Nick query - SELECT * FROM audit_log WHERE patient_id=1

All patient data is encrypted by the main server

12 |Mary | 7b226362635163697068657274657874223a2022653237303832623165396162396263633132]
6579517072696d65223220313437393137383937393439333. 39393333313338323434313239373832,
343238353135363637303132333730353034353730383935393832353038373234343533323137313630
323735343339353231373734323039313133383630353637393435373630323739343535343636313534)
353736303534333433373632323834333734383930393234303835313436323937333432333232373332

3335353131353933333139373435383230363731
03266663834306335393530666131303366|

1934333435343130342¢20226976223a2!
2635763697068657274657874223a2022373434353663613062383765333566386136313232303561373)
5223a2032313032333234383436303237323031313234383238313832383334333630373336373039353|
6 3 C 932393339353834383334 383230303830 634

Phase 4: Simulate Tampering

Checking this GUI box will edit one of the Audit Log records, and attempt at access to another
route such as querying the database or editing user name the app will warn the system that
tampering has been detected by the following algorithm:

Simulate AuditLog Tampering

On generation & insertion of Audit Log record:

1.) Acquire mutex lock

2.) Given current Audit Log records recompute a Merkel Tree

3.) If the previous Merkel Tree’s root is equal to the newly computed Merkel Tree’s root
then no tampering has occurred, else tampering has definitely occurred (First Merkel
Tree is computed in Phase 1: Startup)

4.) If no tampering, insert Audit Log record

5.) Set the current Merkel Tree to be the Merkel Tree computed after the addition of the
new Audit Log Record

6.) Release mutex lock

Page 7 of 30

Page 8 of 30

This algorithm guarantees that any tampering will be detected by the system since no
operations having to do with creating/checking the Merkel Tree can occur outside the mutex
locks.

[3.0] SSDAS System Architecture

As shown below there are multiple functions: [3.1] Describe the system components and their
functionality: [3.1.1] Authentication Server; [3.1.2] Audit Server; [3.1.3] Query Server

[3.1.4] Others, etc.. [3.2] Describe the communication patterns among the components
(requests and response).

—

,_————'_4—'_'__—'___?’/-‘;R|ﬂ:u DB \

— Patiert Data /}

e

L

— Guery reavests (SAL code)

= fucrypted Patiet Data ASS/RSA

Post Blockehain on Login -
Post block on Audt Log Update =

Flagk Loga for
authentication
JJ) Erarypted sredentials sent As/Rs4 .
o — Login Reagiced vio. userrome ord password———=>
e W
— Requirgments:
chents.
Provide usermame & passaoed 1.) Tmplement routings that support “Privacy” geal. In particular, configntiality and integrity protection of
to logn Vi Flask Login Manager seraitive dato i Transt and ot rest. You should datify which dota sanoged by your Systes remires
such protection. -—— Solution AES/RSA Encryption of dote ot rest L in transit
Their settion data
is subseauertly looded 2 Tuplement routines to support “Gueries” gool. Fatients con auery the system to mostor usoge of oaly
. J their oum BHR data, ThHs means That patients sheuld be able to issue queries over The audt data to see
- who accessed their BHR doto. Awlil comparies con auery the system o monter usage of EHR date of
all patierts. - Solution: Salite DE with internal logic ard access control via. Flask Login

1) Leplement routines to support “Imeutablity” goal. Demoestrate how your systes enforces lmmatabilty

buy implemerting o scenario where on attocker tampers with some oudit dato. and the system reports the

attack, For this task just detection of tempering is grough, === Solution Merkel Trees st Intemal Logic

OPFTION 2

4. Lwplemant routings to support “Tdentification and authorization goal.

Solution ————Flagk Login: Al e points i Main server asd Query Server

remuire Flagk Login eradenfials That use NIST approved ehesk_passmerd_hash, gererate passord bhagh Pusetions frem werkasugseeurity forary

5) Tmplemart routings to support “Detartralization” soal. This maans et there is no single
ety Corganization) that controls the audit logs. Bmw._usgd teshology works well

Such Syates, ——— -Solution: Blockchain that is decertrolized asong all aodes in the seteork. Al nodes hove routes to post and get blockehain date.
On ion of an audit log record o block is added fo the blockchain ard propagated across the nefuerk

The Main Server on login will allow access to routes that will allow a user to query the audit log
and their user (patient) data. Blockchain and Merkel Tree data structured are generated on
bootup of the Main Server and Query Server respectively. The blockchain is posted to clients

Page 8 of 30

Page 9 of 30

and to the Query Server to maintain decentralization of the Audit Log. A key management
system is held within the Main Server that encrypts patient data that is being sent to any other
route/port and it only decrypted when HTML needs to be rendered to the appropriate user or
edits to user data need to be submitted by a Super User.

Patient data needs to be decrypted to render HTML properly

{{ user.id }}

{{ user.name }}

{{ decrypt(user.email, "keys/" + user.name + ".prv") }}

{{ decrypt(user.dob, "keys/" + user.name + ".prv") }}

{{ decrypt(user.gender, "keys/" + user.name + ".prv") }}

{{ decrypt(user.blood_type, "keys/" + user.name + “.prv") }}

{{ decrypt(user.medical_condition, "keys/" + user.name + “.prv") }}
{{ decrypt(user.medication, "keys/" + user.name + “".prv") }}

Patient data needs to be decrypted to submit to the Query Server so the sqlite database can
update properly.

Patient data is subsequently re-encrypted using the User’s public key once the form is
submitted on the “edit_user/user_id” route

[4.0] Cryptographic Components

[4.1] Discuss appropriate choice of cryptographic primitives to ensure system supports goals.

(Block Cipher)

Integrity (Public-
Key Cipher)

(Block Cipher)

Integrity (Public-
Key Cipher)

(Block Cipher)

Integrity (Public-
Key Cipher)

Goal/Crypto Authentication Audit Server Query Server Patient Data

Primitive Server (app.py) (app.py/ sqlite | (QueryServer.py) (sqglite DB)
DB)

Privacy Confidentiality Confidentiality Confidentiality Confidentiality

(Block Cipher)

Integrity (Public-
Key Cipher)

Page 9 of 30

Page 10 of 30

Functions/ Sha-
256)

Functions/ Sha-
256

Functions/ Sha-
256)

Identification & | Authenticity Authenticity Authenticity Authenticity
Authorization (Hash (Hash (Hash Functions) | (Hash
Functions) Functions) Functions)
Queries Authenticity Authenticity Authenticity Authenticity
(Hash (Hash (Hash Functions) | (Hash
Functions) Functions) Functions)
Immutability Nonrepudiation/ | Nonrepudiation/ | Nonrepudiation/ | Nonrepudiation/
Integrity (Hash Integrity (Hash Integrity (Hash Integrity (Hash
Functions/Sha- | Functions/ Sha- | Functions/ Sha- | Functions/ Sha-
256) 256) 256) 256)
Decentralization | Nonrepudiation/ | Nonrepudiation/ | Nonrepudiation/ | Nonrepudiation/
Integrity (Hash Integrity (Hash Integrity (Hash Integrity (Hash

Functions/ Sha-
256)

[4.2] Describe concrete encryption schemes and key management approaches used in system.

Encryption Schemes

Detection

Merkel Tree - Tampering

keys

RSA - Encryption of AES

Patient Data

AES-128 - Encryption of

Blockchain - Decentralization

Key Management

Diffie Hellman

[5.0] Evaluation: SSDAS System Meets Design and Implementation Goals/Requirements

To evaluate and measure the SSDAS artifact using the Method’s Minimal Viable Product (MVP)
concept—"*“...a version of the product that enables a full turn of the build-measure-learn loop
with the minimal amount of effort and the least amount of development time” —the artifact
will be evaluated/measured against seven scenarios (or use cases) listed below to demonstrate
the MVP meets the five overall SSDAS goals: (1) Privacy; (2) Queries; (3) Immutability; (4)
Identification and Authorization; and (5)Decentralization [14].

For ease of reading, the seven scenarios (or use cases) are summarized below in outline format.
Then, the SSDS artifact will demonstrate and measure it against each scenario as proof—using

screenshots.

Page 10 of 30

Page 11 of 30

[5.1] Scenario 1: Audit Data Record is Generated. Transmitted, and Stored in the Audit Log
[5.2] Scenario 2: Patient Wants to Know Who Accessed Their HER Data

[5.3] Scenario 3: Auditor Wants to Know Who Accessed Data of All or Particular Patients
[5.4] Scenario 4: Attacker Corrupts an Existing Audit Record

[5.5] Scenario 5: Patient, Auditor, or Attacker Tries to Log-In to Your System

[5.6] Scenario 6: Patient, Auditor, or Attacker Tries to Access Audit Data

[5.7] Scenario 7: Multiple Servers Keep an Updated Version of the Ledger

[5.1] Scenario 1: Audit Data Record is Generated. Transmitted, and Stored in the Audit Log

Audit Record is generated and stored in the Sqlite DB, Blockchain, & Merkel Tree

Slite DB

SELECT = FROM audit_log;

SELECT * FROM audit_log;
SELECT * FROM audit_log WHERE patient_id=1

Blockchain

Merkel Tree

Page 11 of 30

Page 12 of 30

[5.2] Scenario 2: Patient Wants to Know Who Accessed Their EHR Data

Patients will be sent a response by the Query Server with all Audit Logs pertaining to their user
id

Query Results for User: Nick with Patient ID: 1

« Home
* Query Database
* Logout
Query Results
ID Datetime Patient ID User ID Action Type
3 2023-04-28 14:21:07.001476 1 Nick query - SELECT * FROM user WHERE id=1
43 2023-04-29 12:15:45.090511 1 Nick query - SELECT * FROM audit_log WHERE patient_id=1
44 2023-04-29 12:15:45.090511 1 alice change

[5.3] Scenario 3: Auditor Wants to Know Who Accessed Data of All or Particular Patients

Auditors are Super Users and therefore receive a different response from the Query Server with
all Audit Log records

INPUT QUERY: SELECT * FROM audit_log;
QUERY RESULT: All audit log records

Query Results

Action Type
query - SELECT * FROM audit_log:
e change
query - SELECT * FROM WHERE patient_id=
query - SELECT * FROM audit_log WHERE paticat_id=
query - SELECT * FROM user WHERE id=1

e chang
query - SELECT * FROM audit_log WHERE paticat_id=
query - SELECT * FROM asdit_log:

SELECT * FROM user:

query - SELECT * FROM asdit_log:
query - SELECT * FROM asdit_log WHERE patient_id=

e query - SELECT * FROM audit_log:
27 20230501 10:13:46275916 12 Mary query - SELECT * FROM audit_log WHERE paticat_id=12

INPUT QUERY: SELECT * FROM audit_log WHERE patient_id=1;
QUERY RESULT: A subset of audit_log records just pertaining to User “Nick”

Page 12 of 30

Page 13 of 30

Query Results

m Datetime Patient TD User 1D Action Type

3 2023-05-01 09:47:01.833094 1 Nick query - SELECT * FROM audit_log WHERE patient_id=1
4 2023-05-01 09:47:01.833094 1 Nick query - SELECT * FROM audit_log WHERE patient_id=1
5 2023-05-0109:47:01.833094 1 Nick query - SELECT * FROM user WHERE id=1

6 2023-05-0109:47:01.833094 1 alice change

7 2023-05-01 09:47:01.833094 1 Nick query - SELECT * FROM audit_log WHERE patient_id=1
15 2023-05-01 09:47:01 833094 1 Nick query - SELECT * FROM audit_log WHERE patient_id=1
28 2023-05-01 10:13:46.275916 1 Nick query - SELECT * FROM audit_log WHERE patient_id=1
30 2023-05-01 10:13:46.275916 1 Nick query - SELECT * FROM audit_log WHERE patient_id=1
31 2023-05-01 10:13:46.275916 1 Nick query - SELECT * FROM user WHERE id=1

38 2023-05-01 10:13:46.275916 1 alice change

[5.4] Scenario 4: Attacker Corrupts an Existing Audit Record

A GUIl is provided on the home screen to simulate Audit Log Tampering

Simulate AuditLog Tampering

Submitting the button will run the code in the following route:

@app.route('/tamper', methods=['POST'])
tamper_audit_log():
if request.form.get('tamper'):
audit_record = AuditlLog.query.get(1)

audit_record.action_type = "Tamperered With"
db.session.commit()
return redirect(url_for('index'))

As seen the Audit Log ‘record 1” has been tampered with
0

q

1|2823 -04-28
2|2023-04-28
3|2023-04-28 14:21:07. i SELECT * FROM user WHERE id=1
4|2023-04-28
5|2023-04-28
6|2023-04-28
7|2023-04-28
8|2023-04-28
0]2023-04-28 14:22:21.847462|4|alice|create
10|2023-04-28 14:22:21.847462|4|alice|delete
11]|2023-04-28 14:22:21.847462|4|alice|create
12|2023-04-28 14:22:21.847462|4|alice|delete
13]|2023-04-28 14:22:21.847462|4|alice|create
14|2023-04-28 14:22:21.847462|4|alice|delete
15]|2023-04-28 14:22:21.847462|4|alice|create

14:22:21. 847462 |4|a1lce|dele‘te

The following “manageAuditLog” function will detect this tampering atomically using mutex
locks as described in Section [2.0] System Workflow Phase 4

Page 13 of 30

Page 14 of 30

AuditLog(patient_id=str(patient_ic user_id=current_user.id, action_type='query - ' + sql_code)
manageAuditLog(log)

udit Log Tampering D

Tampering Detected Screen
Warning: Audit Log Tampering Detected!!!

[5.5] Scenario 5: Patient, Auditor, or Attacker Tries to Log-In to Your System

An Attacker tries to login:

Login

Username: | Attacker]

Password: | |

Unless proper credentials are provided the Main Server will not provide rendered HTML for a
client and a 401 screen will appear.

1/Final_Prog/FinalProg/1ib/python3. 18/site-pack

31/Final_Prog/FinalProg/1ib/python3.18/site-package

31/Final_Prog/FinalProg/lib/python3.10/site-packages/

1/Final_Prog/FinalProg/lib/py 10/site-packages/

. The funi her retur

3Fuserna

Page 14 of 30

Page 15 of 30

[5.6] Scenario 6: Patient, Auditor, or Attacker Tries to Access Audit Data

@login_required decorator on Query Server prevents Querying unless authenticated

@app. routel(|' /query_database')I
@login_required
query_database():
if request.method == 'GET':

sql_code = request.args.get('sgl_code')

conn = sqlite3.connect('./instance/sqlite.db')

cursor = conn.cursor()

An attacker fails to access endpoint /query_database unless authenticated

@ 500 Internal Server Error

& c 127.0

Finance 101 - Car.. @ Big-O Algorithm C. Tuition & Funding... [l Computaticnal Co. s Computer Science. = Classes Offered

[nternal Server Error

"he server encountered an internal ervor and was unable to complete your request. Either the server is overloaded or there is an error in the application.

Login credentials required to access endpoint

Tr K (m

Auditor accessing the Audit Data at the same endpoint is authenticated by Flask Login manager
and werkzeug.security Python library

Page 15 of 30

Page 16 of 30

» Home
* Query Database

* Logout
Query Results
D Datetime Patient ID User ID Action Type
1 2023-04-28 14:19:06.542923 alice alice query - SELECT * FROM audit_log;
2 2023-04-28 14:19:06.542923 4 alice create
3 2023-04-28 14:21:07.001476 1 Nick query - SELECT * FROM user WHERE id=1
4 2023-04-28 14:21:07.001476 4 alice delete
5 2023-04-28 14:22:21.847462 4 alice create
6 2023-04-28 14:22:21 847462 4 alice delete
7 2023-04-28 14:22:21.847462 4 alice create
8 2023-04-28 14:22:21.847462 4 alice delete
9 2023-04-28 14:22:21.847462 4 alice create
10 2023-04-28 14:22:21.847462 4 alice delete
11 2023-04-28 14:22:21.847462 4 alice create
12 2023-04-28 14:22:21.847462 4 alice delete
13 2023-04-28 14:22:21.847462 4 alice create
14 2023-04-28 14:22:21.847462 4 alice delete
15 2023-04-28 14:22:21.847462 4 alice create
16 2023-04-28 14:22:21.847462 4 alice delete
17 2023-04-28 14:22:21.847462 4 alice create

[5.7] Scenario 7: Multiple Servers Keep an Updated Version of the Ledger

On Port 5000 we have a blockchain of the Audit Log

On Port 5001 we have an exact blockchain Copy of the Audit Log

Page 16 of 30

Page 17 of 30

Notice every block has the same hash as the correspond block on the different port. A true
exact copy. Every client who is a Super User will also have a copy of the Blockchain sent to
them.

[6.0] System Assumptions and Limitation
[6.1] Prototype Assumptions—assignment requirements,
Assumption:

Assumption 1: The only threat model considered in this prototype is an insider to the system
who was able to get Super User login credentials. We recognize that in a production environment
cryptosystem requires precisely specifying formal methods. Specifically, we would need to
consider network attacks such as Brute force attack, known plaintext dictionary, Replay attack,
Man in the middle, Password sniffing, IP spoofing, Connection hijacking, SYN flooding.

Assumption 2: In a true production environment cryptosystem we would need to consider the
organizational, legal, and regulatory policies however for this prototype we only consider 5 goals
specified in [5.0] Evaluation: SSDAS System Meets Design and Implementation
Goals/Requirements

Assumption3: The instructions asked for a PDF format with a font size of 12 points, single-
spaced, single column. Not less than 10 and no more than 20 pages. Figures, tables, screenshots
and the like are not included in the 20-page maximum page count. You will not be penalized for
exceeding the page limit, but text beyond the 20-page limit will not be considered in grading.
Therefore, please consider that if we removed this documents screenshots/figures/tables the
document would actually be less than 20-pages. (Presently at 30)

Limitations:

Limitation 1: Since on bootup of the Main Server sends a copy of the blockchain to the
Query Server the servers must be started in the order

1.) Query Server

2.) Main Server

Limitation 2: The Audit Log does not exceed 500 records

It should be noted that a substantially large Audit record will not be sent over HTTP to the Query
Server or clients because the message would be too long. The message needs to be cut up into
chunks and sent over the network but did not have time to implement this case handling.

Limitation 3: Main Server always logs in a User or Super User as the first action taken
On Login is when the blockchain is sent to the Query Server and client nodes.

Limitation 4: We are not using an actual networking to simulate packet flow among nodes.

Page 17 of 30

Page 18 of 30

Our implementation runs on a single machine with different ports being used as a simulation of
an entirely different machine. Message exchange is done with the Python requests library and
called from a client or a server. We explored using DETER (Cyber Defense Technology
Experimental Research) for a realistic implementation that is scalable, distributed, and
decentralized. Our key management system just uses a basic implementation that is easily
substitutable for an actual key management implementation such as Diffie-Hellman key
exchange for extra network security TLS 1.3

[6.2] Take MVP baseline and compare to EHR Blockchain References, Privacy Class,
legal(weaknesses)—free flow like assignment big picture and actual prototype.

[7.0] Implementation:

[7.1] SSDAS Programs Design Written Description

In the Main Server (app.py) Flask is used to render HTML, redirect URLS, create session

variables, create requests to the Query Server and serve json and appropriate endpoints

Flask Login is used to create a Login Manager that will authenticate users with the
werkzeug.security libeary

SQLAIchemy is used to create SQL models that define the scheme of the User and Audit Log
tables.

Buildmtree, genkeys, RSAcrypt, and blockchain are all custom code to meet the requirements of
the assignment

All other libraries are to do basic datetime, and string manipulation

, render_template, redirect, url_for, request, session, jsonify
) er, login_user, logout_user, login_required, UserMixin, current_user

t check_password_hash, generate_password_hash

t get_keys
rt encrypt, decrypt

Page 18 of 30

Page 19 of 30

@ queryServerpy M X & app.py M B index2.htm @ blockchain.p

® querySe
1sk, request, redirect, url_for, jsonify
login_required, LoginManager, UserMixin, login_user,
yrt check_password_hash

lparse, parse_gs

[7.2] Demonstrate SSDAS Programs Work by Goals with Screen Capture

[7.2.1] Privacy: Patient privacy should be maintained. Unauthorized entities should not be
able to access audit records.

Audit Records are protected by Flask Login Manager and additionally Patient User data is
encrypted using (AES/RSA) and only decrypted by the Main Server when HTML is rendered at
the appropriate time using a User’s private key.

User Encrypted Data (AES/RSA)

c 127.0.01 Q& %

Finance 101 - Car.. @ Big-O Algorithm C... Tuition & Funding.. [Computational Co.. 1 Computer Science... 1% Classes Offered -. OpeningTree M.S. Computer Sc.

Data is Encrypted in user table in Sqglite DB

Page 19 of 30

Page 20 of 30

lsqlite> SELECT * FROM user;
|Nick|7b226362635T63697068657274657874223a20223161323538303830636366616465303066616662313134323863343165643161222c2022
6b65795f7072696d65223a2034353832323036313838313138383436343534333536363537333938393539353630373635383230303839353637353
£3532323337303635383631373735383932303638333433343137393636383638313438383830303138313435373739383737323034343638323133
[37303630383539383638373331313932393630383932313236323037333432383830393936333137373739313239313633323033373235393437373
p3530353431333039313038303032363639303031313533313633383531333234373735383633383633323431323832363631353634393939313237
[35373434313935353338333430303839353035383539353539373836383732343938343839363531363737313932343037313133343031303333323
9383532313636373234363330373735313839363237312¢20226976223a202263396532616166373938343162356531353735366562393666623861
[37346266227d | 7b226362635763697068657274657874223a2022623837393662346266613163316339383636363731353962373165616236316322
[2c20226b6579517072696d65223a2032333937323438363831303531353236333830373239383337393037303333303435343732393739373837353
83237323933343830393438373735303433323335373835313431333733393932373731303832393531333232353036363638363533383936393139
[32303735373538313136333338343231323032313839383432393939333331313430333937343733353335313131343732313833323938313735343
63139343130353537323637343139343538323839343936353038313235343932323436373831313537383930363436313332323232353034313633
[30373332393739303330303231363630313131363934313033393432353039373531343236333638353539323539303431363832323130303231343
323131333934353238353233383135313136323237333030362c20226976223a202234636430313363343338643639363066613162656263366635
[39396665653232227d | 7b226362635763697068657274657874223a2022656333373463356263316135343163663565313966396566336136323835

E 202796b6579 p72806d6 820 A 83634 f b A3036 f3438 636 A30 g 8 f 2

Data encrypted on /add_user route
@app.route('/add_user', methods=['POST
@login_required

add_user():

name = request.form['name']

get_keys|(name)

email = encrypt(request.form('e

dob = encrypt(request.form['dob

gender = encrypt(request.form['ge
blood_type = encrypt(request.form
medical_condition = encrypt(request.form
medication = encrypt(request.form['med

@app.route(' /e r , methods=
@login_required
edit_user(user_id):
user = User.query.get(user_id)
f current_user.username logi .audit_users:
render_template(th .html'), 401
request.metho: POST':
user.name = request.form|]
user.email = encrypt(request.form + user.name +
user.dob = encrypt(re . » "k + user.name +)
user.gender = encrypt(req for , "key + user.name + ",)
user.blood_type = encrypt o1 y A + user.name +)
user.medical_condition = enc ,» "key + user.name +

user. t ys/" + user.name +)

er.name }}

decrypt{user.email, “keys/" + user.name +

decrypt(user.dob, "key: "

decrypt(user.gende

decrypt(user.

decrypt(user. € "ke + ".prv") }}
decrypt(user.medication, "keys " ") }}

Keys Stored in app.py and generated on /add_user

Page 20 of 30

Page 21 of 30

Alan.prv
Alan.pub
Elena.prv
Elena.pub
Jason.prv
Jason.pub
Maria.prv

Maria.pub

Nick.prv
Nick.pub

[7.2.2] Identification and Authorization: All system users must be identified and
authenticated. All requests to access the audit data should be authorized.

Super Users (audit companies) and Users (Regular Patients) are given login credentials

Patient Log-In Screen (Only the Regular User Record)

. “li e
» Query Database
« Logout
.
Welcome, Nick!
ID Name Email DOB Gender Blood Type Medical Condition Medication
I Nick Nick@gmailcom May 13th 1994 Male AB Tired Sleep

Simulate AuditLog Tampering | Submit

Audit User Login Screen (All Records)

Page 21 of 30

Page 22 of 30

* Home |
» Query Database
» View Blockchain
» View MerkelTree :
» View Encrypted Patient Data(RSA/AES)
« Logout
.
Welcome, alice!
ID Name Email DOB Gender Blood Type Medical Condition Medicati |
1 Nick Nick@gmail.com May 13th 1994 Male AB Tired Sleep
2 Alan Alan@gmail.com 1994 male AB Tired Sleep
3 Maria maria@gmail.com Feb 10 1959 Female O Flu Pennicillin
4 Elena Elena@gmail.com March 13 1994 Female O Tired Rest
5 Jason Jason@gmail.com Dec 19 1996 Male O Flu antibiotics
Name Email DOB [Gender Blood Type Medical Conditior Medication [Add User

[Simulate AuditLog Tampering | Submit

[7.2.3] Queries: Only authorized entities should be able to query audit records.

To be able to Query the SQL database through the Query Server each endpoint needs to be
authenticated through the Flask Login manager and the password hashing and checking
functions of the werkzeug.security Python Library. The Query Server will send back an
appropriate response for the logged in User based on whether they are a Super User or a
Regular User.

Query Database Screen

s Home
* Query Database
= Logout

Query the Database

SELECT * FROM
Enter your SQL code: (2udit_log;
Execute

Query Server Running on Port 5001

Page 22 of 30

Page 23 of 30

@ queryServerpy X @

®

Query Results

D Datetime Patient ID User ID Action Type

1 2023-04-28 14:19:06.542923 alice alice query - SELECT * FROM audit_log;
2 2023-04-28 14:19:06.542923 4 alice create

3 2023-04-28 14:21:07.001476 1 Nick query - SELECT * FROM user WHERE id=1
4 2023-04-28 14:21:07.001476 4 alice delete

5 2023-04-28 14:22:21.847462 4 alice create

6 2023-04-28 14:22:21.847462 4 alice delete

7 2023-04-28 14:22:21.847462 4 alice create

8 2023-04-28 14:22:21.847462 4 alice delete

9 2023-04-28 14:22:21.847462 4 alice create

10 2023-04-28 14:22:21.847462 4 alice delete

11 2023-04-28 14:22:21.847462 4 alice create

12 2023-04-28 14:22:21.847462 4 alice delete

13 2023-04-28 14:22:21.847462 4 alice create

14 2023-04-28 14:22:21.847462 4 alice delete

15 2023-04-28 14:22:21.847462 4 alice create

16 2023-04-28 14:22:21.847462 4 alice delete

17 2023-04-28 14:22:21.847462 4 alice create

Audit Superuser Query Result for Patient Data (All Patient Data shown)

¢ Home
* Query Database
e Logout

Query Results

ID Name Email DOB Gender Blood Type Medical Condition Medication
1 Nick Nick@gmail.com May 13th 1994 Male AB Tired Sleep

2 Alan Alan@gmail.com 1994 male AB Tired Sleep

3 Maria maria@gmail.com Feb 10 1959 Female O Flu Pennicillin
4 Elena Elena@gmail.com March 13 1994 Female O Tired Rest

5 Jason Jason@gmail.com Dec 191996 Male O Flu antibiotics

Patient User Query Result for Audit Log (Only Audit Log records shown pertaining to User: Nick)

Page 23 of 30

Page 24 of 30

Query Results

jul Datetime Patient ID User ID Action Type

3 2023-04-28 14:21:07.001476 1 Nick query - SELECT * FROM user WHERE id=1

43 2023-04-29 12:15:45.090511 1 Nick query - SELECT * FROM audit_log WHERE patient_id=1
44 2023-04-29 12:15:45.090511 1 alice change

Patient User Query Result for Patient Data (Only records shown pertaining to User: Nick)

+ Home
* Query Database

ue:
* Logout

Query Results
ID Name Email DOB Gender Blood Type Medical Condition Medication
1 Nick Nick@gmail.com May 13th 1994 Male O Tired Sleep

[7.2.4] Immutability: No one should be able to delete or change EXISTING audit records
without detection. Any modifications/deletions of the audit records should be detected and
reported. You can focus on attackers who are internal to the system modifying the audit data
after it has already been received by the system. Note that you do not need to protect
information against modification, it is sufficient to just detect and report any unauthorized
modifications to the audit data.

Page 24 of 30

Page 25 of 30

Audit Log Immutability is guaranteed by the steps:

On generation & insertion of Audit Log record:

1.) Acquire mutex lock

2.) Given current Audit Log records recompute a Merkel Tree

3.) If the previous Merkel Tree's root is equal to the newly computed Merkel Tree’s root
then no tampering has occurred, else tampering has definitely occurred (First Merkel
Tree is computed in Phase 1: Startup)

4.) If no tampering, insert Audit Log record

5.) Set the current Merkel Tree to be the Merkel Tree computed after the addition of the
new Audit Log Record

6.) Release mutex lock

This algorithm guarantees that any tampering will be detected by the system since no

operations having to do with creating/checking the Merkel Tree can occur outside the mutex
locks.

Merkel Tree Visualized

|

= = — e e e e e e e e

JSON Merkel Tree

Page 25 of 30

Page 26 of 30

Button on the Home Screen to tamper with an Audit Log Record

Simulate AuditL.og Tampering

Detection Screen Warning
Warning: Audit Log Tampering Detected!!!

Example of Tampering in Sqglite DB

5q q * R -Log;

1]|2023-04-28 14:19:06.542923|alice|alice|Tamperered With
2|2023-04-28 14:19:06.542923|4|alice|create

3|2023-04-28 :21:07.001476 |1 |Nick |query — SELECT * FROM user WHERE id=1
4|2023-04-28 14:21:07.001476|4 |alice|delete

5]|2023-04-28 14:22:21.847462|4|alice|create

6]2023-04-28 14:22:21.847462|4|alice|delete

7|2023-04-28 14:22:21.847462|4|alice|create

8|2023-04-28 14:22:21.847462 |4 |alice|delete

9]2023-04-28 14:22:21.847462|4|alice|create
10|2023-04-28 14:22:21.847462|4|alice|delete
11|2023-04-28 14:22:21.847462|4|alice|create
12|2023-04-28 14:22:21.847462 |4 |alice|delete
13|2023-04-28 122:21.847462 |4 |alice|create
14|2023-04-28 14:22:21.847462|4|alice|delete
15|2023-04-28 14:22:21.847462|4|alice|create
16|2023-04-28 14:22:21.847462 |4 |alice|delete

-

Main Function to deal with the Immutability requirement

[7.2.6] Identification and authorization: ldentification refers to the process of verifying the
identity of an individual or entity. Authorization refers to the process of granting access to a
particular resource or service based on the verified identity of the user or system.

Main Server Flask Login route that is used to Identify and authenticate session of a User on
access to every endpoint

Page 26 of 30

Page 27 of 30

Query Server Flask Login route that is used to Identify and authenticate session of a User on
access to every endpoint

[7.2.6] Decentralization: The system should not rely on a single trusted entity to support
immutability. This means there is no single entity (organization) that controls the audit logs.
Blockchain-based technology works well for such systems.

Every node in the network is posted a copy of the blockchain from the Main Server. On an Audit
Log record creation, a new block is added to the Audit Log, the SQL DB is updated, and the new
block is posted to each node on the network. The hashes of each block preserve the
consistency

Page 27 of 30

Page 28 of 30

Blockchain code:

Query Server route’s to POST blockchain and new blocks to

[7.3] Explanation of SSDAS Programs Execution and Inputs/Outputs

+ Home

* Query Database

« View Blockchain

« View MerkelTree

« View Encrypted Patient Data(RSA/AES)

* Logout
Welcome, alice!
1D Name Email DOB Gender Blood Type Medical Condition Medication
1 Nick Nick@gmail.com May 13th 1994 Male AB Tired Sleep
2 Alan Alan®@gmail.com 1994 male AB Tired Sleep
3 Maria mara@gmail.com Feb 10 1959 Female O Flu Pennicillin
4 Elena Elena@gmail.com March 13 1994 Female O Tired Rest
5 Jason Jason@gmail.com Dec 19 1996 Male O Flu antibiotics
6 Shane Shane @ gmail.com April 20th 1994 Male B Sober Booze
Name Emai DOB Gender Blood Type Medical Conditior Medication Add User

Simulate AuditLog Tampering = Submit

[7.4] Submit SSDAS Code (submitted separately)

[8.0] Demo Recording: Demonstrate how SSDAS System Works (submitted separately)

Page 28 of 30

Page 29 of 30

References

[1] Mihailescu, M. 1., & Nita, S. L. (2021). Cryptography and Cryptanalysis in MATLAB.
Apress.

[2] Stamatellis, C., Papadopoulos, P., Pitropakis, N., Katsikas, S., & Buchanan, W. J. (2020). A
privacy-preserving healthcare framework using hyperledger fabric. Sensors, 20(22), 6587.

[3] Tith, D., Lee, J. S., Suzuki, H., Wijesundara, W. M. A. B., Taira, N., Obi, T., & Ohyama, N.
(2020). Application of blockchain to maintaining patient records in electronic health record for
enhanced privacy, scalability, and availability. Healthcare informatics research, 26(1), 3-12.

[4] Madine, M. M., Battah, A. A., Yaqoob, I., Salah, K., Jayaraman, R., Al-Hammadi, Y., ... &
Ellahham, S. (2020). Blockchain for giving patients control over their medical records. IEEE
Access, 8, 193102-193115.

[5] Dubovitskaya, A., Xu, Z., Ryu, S., Schumacher, M., & Wang, F. (2017). Secure and trustable
electronic medical records sharing using blockchain. In AMIA annual symposium proceedings
(Vol. 2017, p. 650). American Medical Informatics Association.

[6] Xia, Q. 1., Sifah, E. B., Asamoah, K. O., Gao, J., Du, X., & Guizani, M. (2017). MeDShare:
Trust-less medical data sharing among cloud service providers via blockchain. IEEE access, 5,
14757-14767.

[7] Shi, S., He, D, Li, L., Kumar, N., Khan, M. K., & Choo, K. K. R. (2020). Applications of
blockchain in ensuring the security and privacy of electronic health record systems: A survey.
Computers & security, 97, 101966.

[8] Ekblaw, A., Azaria, A., Halamka, J. D., & Lippman, A. (2016, August). A Case Study for
Blockchain in Healthcare:“MedRec” prototype for electronic health records and medical research
data. In Proceedings of IEEE open & big data conference (Vol. 13, p. 13).

[9] Rezaeibagha F, Win KT, Susilo W. A systematic literature review on security and privacy of
electronic health record systems: Technical perspectives. Health Information Management
Journal. 2015;44(3):23-38. doi:10.1177/183335831504400304

[10] Sheikh Mohammad Idrees PA. Blockchain for Healthcare Systems: Challenges, Privacy,
and Securing of Data. CRC Press; 2021. doi:10.1201/9

[11] Adler-Milstein J, Adelman JS, Tai-Seale M, Patel VL, Dymek C. EHR audit logs: A new
goldmine for health services research? Journal of biomedical informatics. 2020;101:103343-
103343. doi:10.1016/j.jbi.2019.103343

[12] Kannampallil T, Adler-Milstein J. Using electronic health record audit log data for research:

insights from early efforts. Journal of the American Medical Informatics Association : JAMIA.
2022;30(1):167-171. doi:10.1093/jamia/ocacl73

Page 29 of 30

Page 30 of 30

[13] Huilgol YS, Adler-Milstein J, Ivey SL, Hong JC. Opportunities to use electronic health
record audit logs to improve cancer care. Cancer medicine (Malden, MA). 2022;11(17):3296-
3303. doi:10.1002/cam4.4690

[14] Reis, E. (2011). The lean startup. New York: Crown Business, 27, 2016-2020.

Page 30 of 30

